## **197.** Hydrogen Bonding in Some Thiosemicarbazones and Thioamides.

## By P. W. SADLER.

The infrared spectra of some heterocyclic thioamides and S- and Nmethylthiosemicarbazones indicate that intermolecular N-H · · · N hydrogen bonds may be formed in addition to N-H · · · S bonds. Both the 2- and 4-imino-groups of thiosemicarbazones may be involved. In  $\alpha$ -diketone monothiosemicarbazones strong intramolecular  $N-H \cdot \cdot \cdot O=C$ bonds predominate; similar six-membered hydrogen-bonded rings occur in hydrazones and phenylhydrazones. No evidence was found, for any of the compounds, of tautomerism of the thione-thiol type, or for  $\sigma - \nu$  correlations in a series of substituted isatin 3-thiosemicarbazones.

MANY studies have been published of the infrared spectra of amides, but few of thioamides or thiosemicarbazones. Davison and Christie<sup>1</sup> recorded the infrared spectra of twentyfour semicarbazones of common ketones and aldehydes, as potassium chloride discs. They assigned characteristic absorptions at 3460 and 3370-2800 cm.<sup>-1</sup> to unbonded and bonded stretching modes. Strong absorptions at 1695 and 1585 cm.<sup>-1</sup> were assigned to the amide I and II bands, and a rather variable absorption at  $1665 \text{ cm}^{-1}$  was very tentatively assigned to a C=N stretching mode. Bogomolow, Postovskii, and Sheinker<sup>2</sup> reported similar bands for the semicarbazones of acetaldehyde and benzaldehyde and a band at 1516~1533 cm.<sup>-1</sup>, which was found in the spectra of five simple thiosemicarbazones,

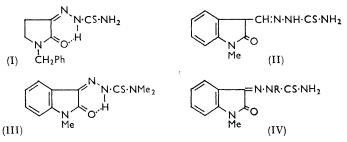
## TABLE 1. Frequencies (cm.<sup>-1</sup>) for thioamides and thiosemicarbazones in potassium bromide discs.

| 2-Thiopropionylbenzimid-    |      |       |      |      | 1010 |      |      |      | 1000 | 1000 |      |            |     |
|-----------------------------|------|-------|------|------|------|------|------|------|------|------|------|------------|-----|
| azole                       |      | 3230  | 3040 |      | 1613 |      |      |      |      |      |      | 877        |     |
| Indole-5-thiocarbonamide    | 3360 | 3260  | 3130 |      | 1612 |      | 1461 | 1431 | 1408 | 1288 | 1251 | 853        |     |
| 3-Formylindole thiosemi-    |      |       |      |      |      |      |      |      |      |      |      |            |     |
| carbazone                   |      | 32001 | or   |      | 1611 | 1541 |      | 1444 | 1371 | 1297 | 1253 | 878        |     |
| Acetaldehyde thiosemicarb-  |      |       |      |      |      |      |      |      |      |      |      |            |     |
| azone                       | 3360 | 3250  | 3140 |      | 1596 | 1512 | 1460 | 1433 | 1366 | 1271 | 1250 | 867        |     |
| Benzaldehyde thiosemicarb-  |      |       |      |      |      |      |      |      |      |      |      |            |     |
| azone                       |      | 3240  | 3130 | 2960 | 1591 | 1540 | 1470 | 1451 | 1375 | 1299 | 1230 | <b>870</b> |     |
| Benzaldehyde 4,4'-dimethyl- |      |       |      |      |      |      |      |      |      |      |      |            |     |
| thiosemicarbazone           |      | 3200  |      |      | 1595 | 1540 |      | 1440 | 1378 | 1299 |      | 876        |     |
| Benzaldehyde S-methylthio-  |      |       |      |      |      |      |      |      |      |      |      |            |     |
| semicarbazone               | 3400 | 3200  |      |      | 1600 | 1530 |      | 1440 |      | 1280 |      | 868        | 690 |
|                             |      |       |      |      |      |      |      |      |      |      |      |            |     |

was assigned to a C=S stretching mode. The C=S vibration had been assigned by Thompson et  $al.^3$  and Colthup <sup>4</sup> to the range 1300-1400 cm.<sup>-1</sup>, and to 1410-1550 cm.<sup>-1</sup> by Miller; <sup>5</sup> but for thioamides the assignment has ranged from 1533 to 965 cm.-1. Tentative assignments include bands at 1265-1180 cm.<sup>-1</sup> for thiopropionamide and N-butylthioacetamide <sup>6</sup> and 965 and 980 cm.<sup>-1</sup> for thiuram monosulphide and thioacetamide respectively.<sup>7</sup> Other assignments <sup>8,9</sup> for the C=S absorption in thioacetamide and thioformamide have favoured the range 1430-1300 cm.<sup>-1</sup>. Our results (Table 1) include strong absorption at 1366—1408 cm.<sup>-1</sup> which is absent from the spectrum of benzaldehyde S-methylthiosemicarbazone, and this is tentatively assigned to a C=S stretching mode. The

Davison and Christie, J., 1955, 3389.
 Bogomolov, Postovskii, and Sheinker, Doklady Akad. Nauk S.S.S.R., 1953, 91, 1111.

<sup>3</sup> Thompson, Nicholson, and Short, Discuss. Faraday Soc., 1950, 9, 222.


<sup>4</sup> Colthup, J. Opt. Soc. Amer., 1950, 40, 397.
 <sup>5</sup> Miller, "Applications of Infrared and Ultraviolet Spectra to Organic Chemistry," in Gilman's "Organic Chemistry," Vol. III, John Wiley and Sons, Inc., New York, 1953, p. 149.
 <sup>6</sup> Marvel, Radzitsky, and Brader, J. Amer. Chem. Soc., 1955, 77, 5997.

<sup>8</sup> Bellamy, J., 1960, 2218.
<sup>8</sup> Mecke and Speisecke, *Chem. Ber.*, 1956, **89**, 1110.
<sup>9</sup> Davies and Jones, J., 1958, 955.

...

methyl derivative also has a strong band at 690 cm.<sup>-1</sup> which is within the range 685-705 cm.<sup>-1</sup> reported for an S-CH<sub>3</sub> stretching vibration.<sup>10</sup>

The 1512—1540 cm.<sup>-1</sup> band could be assigned to an N-H bending mode, in which case the 2'-imino-group must be mainly involved as neither the position nor the intensity of this band varies in benzaldehyde thiosemicarbazone and 4.4'-dimethylthiosemicarbazone. Strong absorption at  $1590 \sim 1610$  cm<sup>-1</sup> is usually associated with a ring vibration, but the C=N group could also be responsible for it as conjugated systems containing both C=N and C=C linkages often exhibit one or more moderately strong bands between 1700 and 1500 cm.<sup>-1</sup>. It is usually not possible to identify such bands with particular C=C or C=N linkages, but in this instance it appears to be primarily associated with the C=N group as the acetaldehyde derivative also shows a strong band at 1596 cm.<sup>-1</sup>; this is about 30 cm.<sup>-1</sup> lower than the usual range quoted, but no other strong absorption is observed in this region. Somewhat similar results have been observed for a series of aliphatic aldehyde dimethylhydrazones, all of which show a peak in the 1610 cm.<sup>-1</sup> region attributable to the C=N stretching vibration. For dimethylhydrazones of aromatic and heterocyclic aldehydes interaction with the C=C group obscures this band, and two characteristic absorption bands, at 1613–1587 and 1580–1555 cm.<sup>-1</sup>, result.<sup>11</sup> The two bands centred on 1280 and 1230 cm.<sup>-1</sup> (Table 1) may fairly confidently be assigned to C-N stretching vibration.



The thiol group in a tautomer should display the thiol band at 2500 cm.<sup>-1</sup>, but no bands are present in the 2500—2650 cm.<sup>-1</sup> region, so tautomerism of the thione-thiol type does not occur in these derivatives. This is in agreement with the observation by Hadži that each compound in a series of 4-arylthiosemicarbazones of  $\alpha$ -keto-acids and the derived 2,3,4,5-tetrahydro-5-oxo-3-thiono-1,2,4-triazines exists in the thiono-form.<sup>12</sup>

Characteristic strong hydrogen bonds of the type normally encountered in amides are indicated for these compounds by the solid-state spectra in Table 1. Three strong N-H stretching frequencies are at 3400—3360, 3250—3200, and 3140—3040 cm.<sup>-1</sup>; in most instances the C-H stretching frequency is merged with the lower N-H stretching frequency. Either the 2'- or the 4'-imino-hydrogen atom may be involved as benzaldehyde 4,4'dimethylthiosemicarbazone and S-methylthiosemicarbazone have similar bonded N-H stretching frequencies. Amide-hydrogen bonding is usually of the intermolecular N-H  $\cdots$  O=C type, with dimer or trimer formation, and similar structures may exist in thioamides. An accurate determination of the crystal structure of thioacetamide has shown that it consists of planar molecules which are probably held by N-H  $\cdots$  S hydrogen bonding are possible owing to the presence of a carbonyl group adjacent to the C=N linkage; and as N-H  $\cdots$  O=C bonds are stronger than N-H  $\cdots$  N or N-H  $\cdots$  S, the first type is likely to predominate. 1-Benzylpyrrolidine-2,3-dione 3-thiosemicarbazone (I) shows typical bonded N-H frequencies at 3360, 3240, and 3140 cm.<sup>-1</sup> due to the strong

- <sup>11</sup> Wiley, Slaymaker, and Krauss, J. Org. Chem., 1957, 22, 204.
- <sup>12</sup> Tišher and Urbaški, J. Org. Chem., 1960, 25, 770.

<sup>&</sup>lt;sup>10</sup> Sheppard, Trans. Faraday Soc., 1950, **46**, 429.

<sup>&</sup>lt;sup>13</sup> Truter, J., 1960, 997

intramolecular bond. 3-Formyl-1-methyloxindole thiosemicarbazone (II) shows similar N-H stretching frequencies, which probably result from intermolecular bonds (insolubility excludes solution spectra). The position of the carbonyl absorption in this compound is of particular interest. 1-Methyloxindole gives a single strong peak at 1700 cm.<sup>-1</sup> in chloroform, whereas for 3-formyl-1-methyloxindole the carbonyl peak is lowered to 1680 cm.<sup>-1</sup> owing to formation of a very strong intramolecular hydrogen bond, as indicated by a bonded O-H absorption appearing as a broad band between 2600 and 2400 cm.<sup>-1</sup>. Therefore, the strong absorption at 1665 cm.<sup>-1</sup> in (II) represents the formation of much stronger hydrogen bonds than those in either 3-formyl-1-methyloxindole or its oxime, in which the carbonyl frequency lies at 1696 cm.<sup>-1</sup>.

The 3-hydrazone, 3-phenylhydrazone, 3-thiosemicarbazone, and 3-4'-phenylthiosemicarbazone of 1-methylisatin all show bonded N-H frequencies at 3400 and 3200 cm.<sup>-1</sup> (Table 3). The broad band at 3400—3200 cm.<sup>-1</sup> shown by 1-methylisatin 3-4',4'-dimethylthiosemicarbazone favours the intramolecular structure (III), which is supported by the data for the 2'-methyl and the 2'-phenyl derivative (IV; R = Me, Ph). Although these compounds in the solid state show bonded N-H frequencies the carbonyl stretching frequency of the 2'-phenyl derivative is raised to 1712 cm.<sup>-1</sup>, and a similar peak appears as a shoulder at 1710 cm.<sup>-1</sup> in the 2'-methyl derivative. Compounds of type (IV) are unlikely to possess intramolecular hydrogen bonds and the intermolecular bonding

TABLE 2. Frequencies  $(cm.^{-1})$  for thiosemicarbazones and hydrazones of heterocyclic  $\alpha$ -diketones in potassium bromide discs.

| 1-Benzylpyrrolidine-2,3-dione 3-thio-<br>semicarbazone                  |              | 3240  | 3140   | 1689 | 1611 | 1488 |      | 1359 |      | 1107 | 1076 |
|-------------------------------------------------------------------------|--------------|-------|--------|------|------|------|------|------|------|------|------|
| 3-Formyl-1-methyloxindole thio-<br>semicarbazone                        |              |       | 3160   |      |      |      |      |      |      | 1121 |      |
| I-Methylisatin 3-4'-phenylthiosemi-<br>carbazone                        |              | 3200h | •      | 1677 | 1609 | 1493 | 1470 | 1368 | 1335 | 1158 | 1090 |
| 1-Methylisatin 3-hydrazone                                              | 3360         | 3200  |        | 1680 |      | 1493 | 1472 | 1376 | 1332 | 1115 | 1098 |
| 1-Methylisatin 3-phenylhydrazone<br>1-Methylisatin 3-2'-phenylthiosemi- | 3400         | 3200  | 3160   | 1680 | _    | 1510 | 1476 | 1376 | 1340 | 1120 | 1100 |
| carbazone<br>1-Methylisatin 3-2'-methylthiosemi-                        | 3400         | 3200  | 2900   | 1712 | 1610 | 1489 | 1468 | 1374 | 1340 | 1152 | 1092 |
| carbazone                                                               | <b>34</b> 00 | 3300  | 1710sh | 1680 | 1610 | 1490 | 1470 | 1365 | 1320 | 1125 | 1100 |
| 1-Methylisatin 3-4',4'-dimethylthio-<br>semicarbazone                   | <b>34</b> 00 | 3200  | 2960   | 1690 | 1615 |      | 1475 | 1375 | 1340 | 1120 | 1100 |

 TABLE 3.
 Frequencies (cm.<sup>-1</sup>) for substituted isatin 3-thiosemicarbazones in potassium bromide discs.

| Subst.                                               |        |      |      |      |       |       |      |        |      |      |      |     |     |     |            |
|------------------------------------------------------|--------|------|------|------|-------|-------|------|--------|------|------|------|-----|-----|-----|------------|
| 7-CF <sub>3</sub>                                    |        | 3300 | 3200 | 1700 | 1625  | 1485  | 1330 | 1300   |      | 1110 | 1060 | 888 | 875 | 804 | 750        |
| 7-Br                                                 | 3440   | 3270 | 3200 | 1690 | 1615  | 1475  | 1330 | 1285   |      | 1130 | 1060 | 884 | 852 | 794 | 728        |
| 5-F                                                  | 3450   | 3290 | 3220 | 1680 | 1608  | 1485  |      | 1300   |      | 1135 | 1050 | 902 | 860 | 799 | 762        |
| $5-CH_2 \cdot CO_2Et \dots$                          | 3420   | 3300 | 3200 | 1690 | 1620  | 1487  |      | 1270   |      | 1125 |      |     | 854 | 804 | 762        |
| $5-CH_2 \cdot CO_2 H \dots$                          | 3440   | 3300 | 3200 | 1680 | 1610  | 1480  | 1379 | 1276   |      | 1124 | 1057 | 897 | 863 | 809 | 758        |
|                                                      | 3400   | 3230 | 3170 | 1685 | 1612  | 1485  | 1340 | 1270/8 | 30   | 1130 | 1055 | 884 | 850 | 788 | 750        |
| 5-Me                                                 |        |      |      |      | 1600  |       |      | 1288   |      | 1127 | 1058 | 897 | 855 | 788 | 759        |
| 6-MeO                                                | 3425br |      |      | 1680 | 1620/ | 1492  |      | 1305/  |      | 1120 |      |     | 856 |     | 756        |
|                                                      |        |      |      |      | 1580  |       |      | 1280   |      |      |      |     |     |     |            |
| 1-Me                                                 | 3410   | 3280 |      | 1685 | 1600  | 1485/ | 1370 | 1340   | 1270 | 1100 | 1040 | 890 |     | 788 | 753        |
|                                                      |        |      |      |      |       | 70    |      |        |      |      |      |     |     |     |            |
| 1-Me-4-CF <sub>3</sub>                               | 3450   | 3270 | 3190 | 1675 | 1600  | 1475  | 1360 | 1340   | 1300 | 1110 | 1065 | 907 | 837 | 780 |            |
| 1-Me-5-CH <sub>2</sub> ·CO <sub>2</sub> H            |        |      |      |      |       |       |      |        | 1279 |      |      |     |     | 783 | 738        |
| $1-\text{Me}-5-\text{CH}_2\cdot\text{CO}_2\text{Et}$ | 3410   | 3280 | 2920 | 1675 | 1600  | 1475  | 1360 | 1335   | 1270 | 1098 | 1032 | 904 | 842 | 787 | <b>740</b> |
|                                                      |        |      |      |      |       |       |      |        |      |      |      |     |     |     |            |

appears to be rather weak. This is confirmed by results for dilute solutions in carbon tetrachloride. The compounds are not sufficiently soluble to provide good records in the  $3 \mu$  region, but 1-methylisatin 3-2'-phenyl- and 3-2'-methyl-thiosemicarbazone have peaks at 1722 and 1708 cm.<sup>-1</sup>, respectively; whereas, 1-methylisatin 3-phenylhydrazone and compound (III) absorb strongly at 1687 and 1683 cm.<sup>-1</sup>. Again, as in the case of oxindole,

the  $\alpha$ -carbonyl stretching frequency is considerably lower for the 3-thiosemicarbazone than for the parent compound  $^{14}$  or the 3-oxime.<sup>15</sup> The demonstration that strong intramolecular hydrogen bonds are formed in compounds of type (III) is important in interpreting the antivaccinial <sup>16</sup> and antivariola activities <sup>17</sup> of 1-alkylisatin 3-thiosemicarbazones.

Table 3 contains solid state spectroscopic data for some ring-substituted and Nmethylated isatin 3-thiosemicarbazones. Correlation exists between  $\sigma$ -values of substituents <sup>18</sup> and both the  $\alpha$ - and  $\beta$ -carbonyl stretching frequencies of substituted isatins.<sup>14</sup> and the latter frequencies are also directly related to the dehydrogenase activities of these compounds.<sup>19</sup> However, reference to Table 3 shows no sign of correlation between  $\sigma$ -values and either the  $\alpha$ -carbonyl or C=N stretching frequency, in accord with the lack of relation of antivaccinial activities to  $\sigma$ -values of substituted isatin 3-thiosemicarbazones.16

Experimental.—Infrared absorption spectra. Spectra were determined by using a Perkin-Elmer 21 double-beam recording spectrometer fitted with a rock-salt prism. Preparative details for the compounds have already been given.<sup>16</sup>

The author thanks the D.S.I.R. for provision of a special research grant which has defrayed some of the cost of this work.

THE MIDDLESEX HOSPITAL, LONDON, W.1.

[Received, August 16th, 1960.]

- <sup>14</sup> O'Sullivan and Sadler, J., 1956, 2202.
  <sup>15</sup> O'Sullivan and Sadler, J. Org. Chem., 1957, 22, 283.
  <sup>16</sup> Bauer and Sadler, Brit. J. Pharmacol., 1960, 15, 101.
  <sup>17</sup> Bauer and Sadler, Lancet, 1960, 1, 1110.
  <sup>18</sup> Hammett, "Physical Organic Chemistry," McGraw-Hill, New York, 1940, p. 188.
  <sup>10</sup> O'Sullivan, 1957, 20, 242.

19 O'Sullivan and Sadler, Arch. Biochem. Biophys., 1957, 66, 243.

960